Erratum

Erratum to “High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(1 1 0)” [Catal. Today 244 (2015) 85–95]

Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

The publisher regrets to inform that there was an error in the labelling of Fig. 2 in the previously published version of the article. More specifically, the labels of subfigures C & D were interchanged. The correct version of Fig. 2 is as follows:

The publisher would like to apologise for any inconvenience caused.

Fig. 2. STM images obtained with the ReactorSTM demonstrating the development of roughness at various stages of the CO oxidation experiment. (A), missing-row reconstruction, room temperature, vacuum, 4.5 nm × 4.5 nm, \(V_{\text{bias}} = -0.10 \) V, and \(I_{\text{tunnel}} = 52 \) pA. (B), lifting of the reconstruction observed during exposure to 1 bar of CO. Note that the transition from the missing-row reconstructed \((1 \times 2)\) surface to the \((1 \times 1)\) structure has made the surface rough, \(T = 433 \) K, 15 nm × 15 nm, \(V_{\text{bias}} = 0.10 \) V, and \(I_{\text{tunnel}} = 749 \) pA. (C), a flat \((1 \times 1)\) structure in a CO-rich flow, \(T = 433 \) K, 4.5 nm × 4.5 nm, \(V_{\text{bias}} = -0.04 \) V, and \(I_{\text{tunnel}} = 86 \) pA. (D), commensurate \((1 \times 2)\) structure, observed immediately after switching to a more O2-rich gas mixture. Note that the surface is still relatively smooth. \(T = 433 \) K, 4.5 nm × 4.5 nm. (E), rough, metallic \((1 \times 1)\) surface, observed after increasing the CO content of the gas mixture again. \(T = 433 \) K, 4.5 nm × 4.5 nm, \(V_{\text{bias}} = 0.08 \) V, and \(I_{\text{tunnel}} = 1004 \) pA.

DOI of original article: http://dx.doi.org/10.1016/j.cattod.2014.07.008.

* Corresponding author. Tel.: +31 71 527 8407.

E-mail address: spronsen@physics.leidenuniv.nl (M.A. van Spronsen).

http://dx.doi.org/10.1016/j.cattod.2015.05.002

0920-5861/© 2015 The Authors. Published by Elsevier B.V. All rights reserved.